Логотип Тирит
Лабораторное, аналитическое и испытательное оборудование
пн-чт 09:00-18:00, пт 09:00-17:00

Каталог оборудования

Биореакторы и ферментёрыГенераторы газовКалориметрыКамеры испытательныеКамеры климатическиеКамеры низкотемпературныеКолонны ректификационныеМагнитные муфтыМельницы лабораторныеМешалки лабораторныеПечи лабораторныеПриборы измерения краевого угла смачиванияРеометры порошковРозлив и упаковкаСмесители планетарныеСтекло лабораторноеСтерилизаторы паровыеТеплообменникиТермостаты твердотельныеТестеры фармпрепаратовФлексометрыХроматографы и спектрофотометрыЦентрифуги лабораторныеШейкеры и вортексыЭксикаторы и перчаточные боксыЭкстракторыРасходники лабораторные

Поверхностные свойства силоксановых покрытий

Полисилоксаны широко применяются при изготовлении покрытий для различных поверхностей, в частности, на их основе производятся различные лакокрасочные материалы (краски, пропитки, шпаклевки и т.п.). Молекула полисилоксана состоит из -SiO- скелета и различных органических радикалов; некоторые метильные радикалы замещены сложными органическими группами, например эфирами. Такие соединения особо ценны, благодаря высокой термической стабильности.

Силоксаны характеризуются большой сжимаемостью и стойкостью к окислению, выдерживают температуру до 190°С, но уже при 200°С начинают разлагаться с образованием оксида кремния. Стабильность силоксановых поверхностей при высокой влажности и температуре может быть достигнута метилированием гидроксильных групп в молекуле силоксана.

Силоксаны обладают наименьшим поверхностным натяжением из всех известных рабочих жидкостей. В результате обработки поверхности полисилоксановым раствором улучшается ее термическая стабильность и адгезия, водо- и грязеотталкивающие свойства за счет уменьшения поверхностного натяжения пленок. Увеличение стабильности поверхности может быть оценено с помощью измерения краевого угла смачивания и поверхностного натяжения.

Уменьшение поверхностного натяжения напрямую зависит от содержания диметилоксида кремния: чем больше групп -[SiO(CH3)2] -, тем меньше поверхностное натяжение силоксана. Эфиры в меньшей степени изме-няют поверхностное натяжение, но в свою очередь улучшают показатели скольжения и термостабильности. При необходимости нанести новое покрытие на лаковую поверхность, значение поверхностного натяжения обрабатываемого участка не может быть слишком низким, иначе новое покрытие не приклеится к предыдущему слою. Необходимое значение поверхностного натяжения достигается подбором соотношения полиэфирных групп и диметилоксида кремния.

Для получения термостойкой поверхности с низким поверхностным натяжением не рекомендуется использовать силоксаны с этиленоксидными группами в связи с высокой гидрофильностью последних. Наибольшую стабильность проявляют покрытия, в структуре которых содержатся реакционные группы, способствующие образо-ванию связей между соседними молекулами.

Влияние функциональных групп на термическую стойкость было рассмотрено на примере двух силоксанов:

  • Силоксан Е - без реакционных концевых групп
  • Силоксан G - с функциональными ОН-группами

Свободная энергия поверхности (СЭП) образцов, обработанных силоксанами Е и G, была рассчитана по краевому углу смачивания, измеренному с помощью прибора краевого угла EasyDrop. Далее эти образцы подвергли стерилизации водяным паром в автоклаве при 130°С в течение 30 минут, после чего снова была измерена поверхностная энергия.

СилоксанСЭП, мН/мПолярная часть СЭП, мН/мДисперсная часть СЭП, мН/м
Силоксан E24,31,0 23,3
Силоксан G21,40,8 20,6
Силоксан E (после обработки)34,7 0,933,8
Силоксан G (после обработки)21,9 0,7 21,2

Как показывает приведённый пример, силоксан с функциональными группами (Силоксан G), способствующи-ми образованию дополнительных (водородных) связей в молекуле, фактически не изменяется в ходе термической обработки. В то же время, поверхностное натяжение силоксана без функциональных групп (Силоксан Е) значительно увеличилось после термообработки, в частности, увеличилась дисперсная составляющая свободной энергии.

Приведенный пример показал, насколько важно знать поверхностные свойства покрытий, которые используются для защиты материалов в различных условиях (при высокой влажности, температуре, загазованности и т.п.). Пропитывающие и покровные материалы подбираются в зависимости от того эффекта, который необходимо достичь. Близкие по свойствам материалы дают различный результат, и для того, чтобы разобраться в истинной природе такого поведения, необходим правильный подход к исследованию и применению подходящего покрытия.